skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kunieda, Takeharu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Neurocognitive models of semantic memory have proposed that the ventral anterior temporal lobes (vATLs) encode a graded and multidimensional semantic space—yet neuroimaging studies seeking brain regions that encode semantic structure rarely identify these areas. In simulations, we show that this discrepancy may arise from a crucial mismatch between theory and analysis approach. Utilizing an analysis recently formulated to investigate graded multidimensional representations, representational similarity learning (RSL), we decoded semantic structure from ECoG data collected from the vATL cortical surface while participants named line drawings of common items. The results reveal a graded, multidimensional semantic space encoded in neural activity across the vATL, which evolves over time and simultaneously expresses both broad and finer-grained semantic structure among animate and inanimate concepts. The work resolves the apparent discrepancy within the semantic cognition literature and, more importantly, suggests a new approach to discovering representational structure in neural data more generally. 
    more » « less